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Abstract: In this paper, we introduce viral dynamic modeling of antibody protection from Equine Infectious Anemia Virus (EIAV) infection in Severe 
Combined Immunodeficiency (SCID) horses may lead to insights into the FFT (Fast Fourier Transform) simulation of control of infection by antibody 
vaccination. Circumstances are determined under which wild-type infection is eradicated with the antibody vaccine. Also a three-strain competition 
model is considered in which a second mutant strain may coexist with the first mutant strain. The conditions that permit viral escape by the mutant 
strains are determined. This work provides insights into the development of vaccines that stimulate the immune system to control infection 
effectively.  
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1. INTRODUCTION 

(EIAV)  is an RNA virus, a member of the Retroviridae 
family and of the lentivirus genus infecting  equids. It 
causes a persistent infection characterized by recurring 
febrile episodes associating viremia, fever, 
thrombocytopenia and wasting sysmptoms. Among 
lentiviruses, EIAV is unique in that, despite a rapid virus 
replication and antigenic variation, most animals 
progress from a chronic stage characterized by recurring 
peaks of viremia and fever to an asymptomatic stage of 
infection[1]. The understanding of the correlates of this 
immune control is of great interest in defining vaccine 
strategies. The major challenge to development of a 
successful human immunodeficiency virus type1(HIV-1) 
preventive vaccine is an incomplete understanding of 
the correlates of protective immunity to HIV-1 
infection[2]. Lentiviruses are characterized by high rates 
of mutation, recombination, and replication, resulting in 
multiple, diverse populations of viral variants that 
rapidly adapt to changes in the host environment. 
Understanding virus and host factors that shape the 
evolution and selection of virus variant in vivo is an 
essential component of preventive and therapeutic 
strategies to control lentivirus infections in humans and 
animals. Equine infectious anemia virus (EIAV) 

possesses common features of the Lentiviridae subfamily 
of retroviruses, including a complex genome 
organization, tropism for cells of the 
monocyte/macrophage lineage, and establishment of a 
persistent, life-long infection. The dynamics of clinical 
disease and immune control make EIAV a good model to 
study the role of both host and viral mechanisms 
contributing to lentiviral persistence and pathogenesis 
[3]. Eventually, most horses exert immunological control 
over replicating virus and enter a prolonged period of 
clinical quiescence associated with the presence of 
cytotoxic T cells and broadly neutralizing antibody 
(bNAb). Elucidating mechanisms of viral escape from 
bNAb  is important for the design of effective vaccines 
for EIAV and related lentiviruses, such as HIV-1[4]. The 
Nab responses broadly significantly during long-term 
persistent EIAV infection and bNAb play a critical role in 
EIAV immune control. 

Horses with severe combined immunodeficiency (SCID) 
serve as a useful tool to examine viral dynamics in 
animals without adaptive immune responses. Infusion of 
SCID foals with plasma from a long-term EIAV infected 
immuno  competent horse conferred upon them EIAV-
specific neutralizing antibodies, which protected them 
from wild-type EIAV infection. Mathematical modeling 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015                                                                                                  19 
ISSN 2229-5518   

IJSER © 2015 
http://www.ijser.org 

of neutralizing antibody protection from EIAV infection 
in SCID horses may lead to insights into the mechanisms 
of control of infection by antibody vaccination [5, 6]. 

An impulsive mathematical model is used to predict 
under what conditions we achieve the eradication of the 
wild-type strain with a finite number of antibody 
infusions. Also we estimate the antibody neutralization 
rate and the basic reproductive number R0. Another 
study followed up on this work to examine the effect of 
mutation on CTL vaccine [8, 9]. This is related to the use 
of pulse vaccination, seasonal skipping in recurrent 
epidemics, antiretroviral drug treatment and birth pulses 
in animals [10]. 

The goal of the study is to understand the role that 
neutralizing antibody vaccines can play in the control of 
lentivirus infection with FFT simulation. Conditions are 
determined under which wild-type infection is 
eradicated with the antibody vaccine. This work 
contributes to the understanding of virus control and 
potentially provides insights into the development of 
vaccines that stimulate the immune system to control 
infection [7]. 

Normnalutre 

g  Virus growth rate for wild type in the      

absence of antibodies  

h   Virus growth rate for mutant 1 

i   Virus growth rate for mutant 2 

B       Virus carrying capacity  
     

p  Wild-type virus neutralization by 

antibody 

q   Mutant 1 virus neutralization by 

antibody               

r   Mutant 2 virus neutralization by 
antibody                                       

D   antibody decay rate  
            

iA   Amount of antibody infusion 
             

0A   Antibody on day 0  

            

W  Number of wild-type viral particles 
that initiated infection        

M  Number of mutant 1 viral particles 
that initiated infection         

N  Number of mutant 2 viral particles 
that initiated infection         

1
2

t   Half life of virus due to antibody 

neutralization        

21 3, ,c c c  Viral clearance rate  

             

f   Antibody magnification factor  

2. Mathematical  Model 
 
We use ODE model to three strains of the virus and 

impulsive differential equations to model the behavior of 
neutralizing antibodies. The effect of vaccinating at times 

( )1,7,14kt k = − . WE assume that virus is removed in 

proportion to neutralizing antibodies at rates 
nW,nM,nN, respectively, and  also assume that the wild-
type has higher replication and is more susceptible to the 
antibody respone than mutant 1; similarly, assume that 
mutant 1 has higher replication and is more susceptible 
to the antibody response than mutant 2 [11].  

Then the model is : 

    
1[( ) (1 )]VpA c g t

BW Ke
− + − −

=  

2[( ) (1 )]VqA c h t
BM Ke

− + − −
=  

3[( ) (1 )]VrA c i t
BN Ke

− + − −
=  

( )D pW qM rN tA Ke− + + +=  
iA A∆ =  

Here V W M N= + + , K= arbitrary constant. We 
assume the following: ,p q r g h i> > > > . 

The antibodies on day 0 are calculated from iA  on 
day -1. The value of η  is calculated from the half-life 

of horse IgG. The half-life of virus due to antibody 
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neutralization , 1
2

t  was estimated using the half-life 

of SIV in animals that were CD8-depleted. The viral 
growth rate was calculated by fitting data from EIAV 
infected SCID horses to the model with antibody 
neutralization set to zero with the viral clearance rate 
subtracted. The carrying capacity was also fit to the 
same data and then adjusted to account and clearance 
effects. Note that each strain has a different carrying 
capacity. 
(i). Calculating Parameters:  
Calculating p 
  
 Consider a simplified version of the model 
without impulses or viral replication: 
     

   
dW pWA
dt

= −  

   
dA DA
dt

= −  

   0( ) DtA t A e−=  

   0
DtdW pWA e

dt
−= −  

   0
0 0

t t
DtdW dt pA e dt

W
−= −∫ ∫  

  

 0 0

0

log DtpA pAW e
W D D

− 
= − 

 
 

  

 0 (1 )/
0

DtpA e DW W e
−− −=  

  Put t = t1/2  then 

   1/ 20log 2 (1 )DtpA
e

D
−−

− = −  

   
( )1/ 2

0

log 2
1 Dt

Dp
A e−

=
−

 

Calculating 0A  

  
 The parameter A0  was determined from the 
initial condition A-1 by calculating the exponential 
decay after a single day had elapsed. Thus: 
    

 0 1
DA A e−

−=  

 (ii). Calculating   g  and B: 

 This is calculated by fitting the data from EIAV 
infected control SCID horses A2245, A2247, H707 and 

H713 [5], to the D.E. for wild-type virus with 
antibody neutralization set to zero. After fitting the 
total growth rate, the clearance rate was subtracted to 
determine g . The virus growth rate for mutant  1, h
was determined equivalently by fitting data from 
infected EIAV specific antibody infused SCID horses 
A2239 and A2240 [5], and subtracting the clearance 

rate. To calculate g , we allowed the difference( g - 1c ) 

to range from -0.1 to 9.1 and then recovered g  from 

the viral clearance rate in each Mont Carlo 
simulation. The carrying capacity in the absence of 
antibody neutralization was similarly fitted to EIAV 

infected SCID horses and found to be 62.9 10B = ×

(range 6 61.9 10 9.7 10× − × ). These values were 

then scaled to B  = 1(1 )
c

B
g

−  to account for viral 

growth and clearance. 
  
We analyzed the non-impulsive system there are four 
equilibria (i) the disease-fre equilibrium, (ii) an 
equilibrium with mutant 1 alone, (iii) an equilibrium 
with mutant 2 alone (iv) and a coexistence 
equilibrium, where all three viral strains coexist. Also 
we calculated the basic reproduction number. This is 
a threshold condition that determines whether the 
disease will persist or be eliminated. We determined 

that the disease will persist if 0
1

1gR
c

= > . 0R is a 

composite, consisting of five threshold values(

1, 2 1 2 3, , ,E E ER R R R R )  that are derived from 

bifurcation properties of the existence of endemic  
equilibria. 
We aimed to determine whether, according to the 
model, a finite number of impulses could lead to 
virus elimination. A  finite  number of impulsive 
effects cannot fundamentally alter the long-term 
stability properties of equilibria.  However , if the 
viral load falls below the eradication threshold of one 
viral particle in the horse, then the virus will be 
eradicated. With 3000 ml of plasma in the horse, this 
corresponds to an eradication threshold of one 
particle per 3000ml. 
(iii). The Non-Impulse System: 
The non-impulsive system is equivalent to the 

impulse model with iA  = 0. 
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 If 0A ≠ at equilibrium, then

0pW qM rN D+ + = − < . It follows that any 

equilibrium has 0A = . If 0W = , then either 

0M =  or 2(1 )Vh c
B

− = . In the former case, either 

0N =  or (1 )Ni N
B

− = , 2(1 )
c

N B
i

= −  

Assuming  2
3

1iR
c

= > . In the latter case,

2
3

c
iN c N

h
=  , 0N =  similarly, 2(1 )Mh c

B
− =  , 

2(1 )
c

M B
h

= − assuming 1
2

1hR
c

= >  or 0N = . 

If 0W ≠ , then, 1(1 )Vg c
B

− = ,

1
2

c
hM W c M

g
+ =  assuming 2

1
1

1E
c g

R
hc

= > .

1
3

c
iN W c N

g
+ =

gWIN IW
dNgW gNdW

=
−

 

assuming  3
2

1

1E
c g

R
ic

= >  then W  satisfies : 

 1

2 1 3 1

( )

(1 )

B g c
W

g gg
c g hc c g ic

−
=

+ +
− −

assuming

3
1

1E
gR
c

= > . Hence the equilibria of the non-

impulsive system  are :

32( , , , ) (0,0,0,0), (0, (1 ),0,0), (0,0, (1 ),0)
cc

W M N A D D
h i

= − −

 and   

2 1 3 1

( , , ,0)g gW W W
c g hc c g ic− −

 

If the wild type exists at equilibrium, then do both 
mutants. If ther’s   no  wildtype  at equilibrium, then 
one or the other mutant exists alone or not at all. 
  Jacobian 
 The Jacobian is J = [J1|J2], where : 

1

2
1

(1 )

(1 )

V gW gWpA g c
B B B

hM V hMqA h c
J B B B

iN iN
B B
pA qA

 − + − − − − 
 

− − + − − − =
 − − 
 
 − − 

 

2

3(1 )

gW pW
B

hM qM
J B

V iNrA i c rN
B B
rA D pW qM rN

 − − 
 

− − =
 
 − + − − − −
 
 − − − − − 

     then 

 J|(0,0,0,0)=

1

2

3

0 0 0
0 0 0
0 0 0
0 0 0

g c
h c

i c
D

− 
 − 
 −
 − 

  

This equilibrium is unstable if 3 1ER > , or 

1 21 1R orR> > . It follows that the disease-free 

equilibrium is always unstable. Evaluating J at
(0, ,0,0)M , we have:

1

2

3

(1 ) 0 0 0

(1 )

0 0 (1 ) 0

0 0 0

Mg c
B

hM M hM hMh c qM
B B B B

Mi c
B

D qIM

 − − 
 

− − − − − 
 
 − −
 
 − − 

  

The eigen  values are : 

1,2,3,4 1 2 3(1 ) , (1 ) , (1 ) ,M M ghM Mg c h c i c D qM
B B B B

λ = − − − − − − − − −

 

2 2 2
1 2 3, , ,

c c chMg c h c i c D qM
h h B h

= − − − − − −
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2 3
2 1

1 ( ), , ,
c i c hhMc g hc D qM

h B h
−

= − − − −

 

This equilibrium is unstable if 1 1ER >   or if:

2 3 0c i c h− >                             

Finally, evaluating J at (0,0, N  ,0) we have  

1

2

3

(1 ) 0 0 0

0 (1 ) 0 0

(1 )

0 0 0

Ng c
B

Nh c
B

iN iN N hMi c rN
B B B B

D rN

 − − 
 
 − − 
 
 − − − − − −
 
 − − 

 

1,2,3,4 1 2 3(1 ) , (1 ) , (1 ) ,N N N iNg c h c i c D rN
B B B B

λ = − − − − − − − − −

 
    

3 3 3 3
1 2 3, , ,

c c ic ic
g c h c c D rN

i i i B
= − − − − − −

 

3 2
3 1

1( , , , )
c h c i iNc g ic D rN

i i B
−

= − − −
 

This equilibrium is unstable if 2 1ER >  . 

Calculating 0R  

 Using the existence of the endemic 
equilibrium method [12], the disease is endemic if :  

max 1 2 1 2 3{ , , , , } 1E E ER R R R R >  however, 

note that 3 1 2ER R R> > & 3 2 1E E ER R R> > . Thus 

the condition for the disease to persist is :

0 3 1ER R= >  

C. Stabilizing the Mutant 1 Equilibrium 

  We can write 1g c γ= + , where 

0.5γ = . Then 1
3

1

1E
c

R
c
γ+

= >  suppose

0.01h g= − . Then 2
1

1

1
( 0.01)E

c g
R

g c
= =

−
 

solving we have 2
1 0.0097997

( 0.01)
c g

c
g

= =
−

 

 
3. Results 

 Using the sample values in Table 1, to 
examine the transient and long-term behavior of 
the system. To investigate the effect of antibody 
control, we increased both the antibody 
infusion, and the neutralization ability, by a 
magnification factor m, where m = 1,10, 50. The 
value m = 10 means antibodies are ten times 
greater when infused and are 10 times more 
effective at neutralizing the virus. The 
magnification factor thus accounts for 
theoretical improvements on the vaccine. Also 
we examine the relative effectiveness of viral 
neutralization of mutants using three scenarios : 
(i) the neutralization rates for both mutants are 
identical to the neutralization rate of the wild-
type virus; (2) mutant 1 has 10-fold resistance 
and mutant 2 has 100-fold resistance; and (3) 
both mutants have 100 – fold resistance. The 
results are summarized in table 1. 
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Table 1.  The outcomes from changing antibody infusion and relative effectiveness. 
 
Relative 
effectiveness 

                                       

       Antibody Magnification factor f 

q             r              
 

1
                

10                                                                               50 
                                                         

Figure 

 
p           p  

            
 

coexisten
ce    

wild-type 
last                    

exponentially fast 1 

 
0.1 p      0.01 p                                            

Coexiste
nce 

wild-type 
&Mutant 
1     
eradicated    
        

Mutant2 last 2 

 
0.01 p     0.01 p                                                        
 

Coexiste
nce 

wild-type 
eradicated    

mutant 1 escape   or 
eradication            

                                                                                         

3 
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Figure 1. FFT simulation of mutant1 
 
 

 

 

 
 

  
In figure 1 To examine the case when the antibody 
neutralization rates for all three strains we use FFT 
simulation .The antibody rates for all three strains 
are equal. When antibody magnification is f=1, all 
three strains coexist, but the wild-type dominates. 
Both 10-fold and 50-fold antibody magnifications 
eventually control all three strains of the virus. In 
the case of 10-fold antibody magnification 
corresponds to the first antibody boost on Day 7, 
which accelerates the eradication process. 
Eradication occurs exponentially quickly in the case 
of 50-fold magnification. 
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Figure 2. FFT simulation of mutant2 

 
 

 
In Figure 2 We examined the case when Mutant 1 
had 10-fold resistance and Mutant 2 had 100-fold 
resistance When antibody magnification is f=1, all 
three strains coexist, but the wild-type dominates. 
10-fold antibody magnification controls the wild-
type and mutant1, but allows Mutant2 to escape 
However,50-fold antibody magnification eventually 
controls all three strains of the virus. Mutant 2 is 
eradicated before the antibodies have decayed to 
zero. 
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 Figure 3. FFT simulation of wild type 

 

  
In figure 3  We examined the case when both mutants had 
100-fold resistance. When f=1 all three strains coexist, but 
the wild-type dominates. 10-fold antibody magnification 
controls the wild-type and reduces mutant2, but allows 
mutant 1 to escape; note that there are no antibodies after 
about 40 days, so mutant 2 will eventually be out-
competed by mutant1. 50-fold antibody magnification still 
allows mutant 1 to escape, but controls mutant 2 ; in this 
case, mutant 1 is reduced, but not eradicated, when the 
antibodies decay to zero, allowing it to bounce back.  

 
4. Discussion 

Mathematically, we identified the steady states of the 
model; we calculated the basic reproduction number and 
we demonstrated the stability of the steady states. We 
used an impulsive differential equation model to 
investigate the scenarios that can theoretically give rise to 
the outcomes observed in viral infections with antibody 
vaccination [12]. Our model determined under which 
conditions the impulses could eradicate infection or 
could result in mutant escape. This study shows the 
effects of magnification of the antibody effect. This 
illustrates the range of effectiveness of different 
vaccination strategies. If we had a vaccine that was more 
effective than the baseline vaccine, then different 
outcomes could occur, including mutant escape. Our 
model    can compare the results found when mutants are 
equally susceptible to antibody neutralization with the 
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results found when mutants are differentially susceptible 
to antibody neutralization. Finally, our modeling results 
suggest how the escape of a mutant strain can emerge in 
the presence of a second weaker mutant strain. We 
calculated the virus neutralization rate by antibodies 
from the initial amount of antibody infusion, the half-life 
of virus due to neutralizing antibody and the antibody 
decay rate. Also we calculated the overall growth rates of 
wild-type and mutant virus strains by fitting data from 
EIAV infected SCID horses to our model. To develop an 
effective neutralizing antibody-eliciting vaccine, it is 
essential to have an understanding of the conditions that 
allow virus persistence in the face of neutralizing 
antibodies. The model shows which conditions can lead 
to the control of all strains, which conditions lead to the 
escape of all mutant strains, and which conditions lead to 
control of some strains but escape of others. This 

indicates the importance of the dosage and neutralization 
rate needed by passive immunization to control infection.  
 
 

5. Conclusions 
 In the studies the infusion of broadly neutralizing 
antibodies protected some horses from EIAV infection, 
and other horses from wild-type EIAV infection but not 
from a neutralization resistant EIAV variant. The current 
study indicates which conditions can theoretically give 
rise to these two outcomes, as well as others. 
Furthermore, our results quantify the high antibody 
magnification, resulting in eradication of wild-type and 
mutant strains, is important for developing an effective 
vaccine. 
      
 Appendix 

Parameter 
 
  

Description Value Range Units 

g  Virus growth rate for wild type in the absence of 
antibodies 

23.60 0-46 day-1 

 
h  Virus growth rate for mutant 1  23.23 0-46 day-1 

 
i  Virus growth rate for mutant 2  23.09 0-46 day-1 

 
B  Virus carrying capacity 1.14x108 7.47x108-3.82x108 virus ml-1 

 
p  Wild-type virus neutralization by antibody 1.462x10-2xm (1.21X10-2-2.67X10-2)m mlmg-1day-1 

 
q  Mutant 1 virus neutralization by antibody (varied) - mlmg-1day-1 

 
r  Mutant 2 virus neutralization by antibody   (varied) - mlmg-1day-1 

 
D  antibody decay rate 0.0315 0.0277-0.0365 day-1 

 
iA  Amount of antibody infusion 38.4Xm (25.6-51.2)Xm mgml-1 

0A  Antibody on day 0 37.2 24.9-49.4 mgml-1 

W  Number of wild-type viral particles that initiated 
infection        

224 175-350 virus ml-1 

 
N  Number of mutant 2 viral particles that initiated 

infection 
1 - virus ml-1 

 
M  Number of mutant 1 viral particles  that initiated 

infection   
9 - virus ml-1 

 

1
2

t  Half life of virus due to antibody neutralization 1.3 0.7-1.8 day 

21 3, ,c c c  Viral clearance rate 23 9.1-3.6 day-1 

f  Antibody magnification factor  {1,10,50} _ 
 

- 
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